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Abstract

This project focuses on the GraalVM Native Image compiler and its static analysis technique that allows

it to transform Java bytecode into optimized native binaries. Our goal was to find a viable method of

comparing call graphs from subsequent compilations and develop a tool to help visualize impacts and

evaluate the results of this analysis. We implemented an algorithm for call graph comparison and created

a web application that allows processing call graphs from Native Image compilation reports and their

comparison and visualization.
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1. Introduction

GraalVM Native Image is a compiler that transforms

Java bytecode into native executable binaries. To

optimize the resulting programs, Native Image uti-

lizes static analysis techniques, whose results have to

be examined. The goal of this project is to develop

a reliable method to compare call graphs produced

during static analysis by GraalVM Native Image and

present the differences in a way that can be used

to evaluate the effectiveness of such analysis. I ex-

perimented with various algorithms and methods for

graph comparison and used one of them to develop

the final product: EdgeTrace, a web application that

allows the import of Native Image reports, viewing

them, and comparing them to each other. The result

is a portable and intuitive web application that can be

used by GraalVM Native Image developers to exam-

ine the results of their work and to aid with further

development of the compiler’s static analysis.

2. Overview of GraalVM Native Image

GraalVM is a Java Development Kit (JDK) devel-

oped by Oracle and built on top of Oracle JDK or

OpenJDK and the HotSpot Java Virtual Machine [3].

Aside from a modern just-in-time compiler, one of its

components is Native Image – technology that allows

compilation of applications written in Java ahead-of-

time. The output of Native Image is a standalone

executable file that contains the user application, all

of its dependencies, and the components of the run-

time environment, such as the garbage collector and

threading support [2]. This means that the applica-

tion can run independently, without the need for a

Java Virtual Machine (JVM).

Native Image works with Java bytecode and the result

is a native executable file for a specific operating

system and architecture, called native image [10].

The compiler reads bytecode from the given Java

class file, performs points-to analysis on it, optionally

runs user initialization code, creates a snapshot of

the heap, then compiles all reachable methods, which

have been discovered by the analysis, into machine

code, and finally links the compiled code and parts of

the runtime into a single executable file. The entire

compilation process is shown in Figure 1 .

To optimize the resulting programs, Native Image uti-

lizes various static analysis methods, mainly points-to

analysis (PTA), which is used to discover elements

(classes, methods, and variables) that will probably

be used during program execution, such that the out-

put, in the ideal case, contains only this so-called

reachable code. Java supports polymorphism and

Java programs often have a lot of virtual methods

and calls, thus there can be multiple different imple-

mentations of every method, and at build time, it

is not always known which specific implementation

will be called; however, sometimes it can be deter-

mined by static analysis, such as the PTA. Ignoring
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the discovery of reachable and unreachable elements

would cause compilation of large amounts of code

that are not needed at runtime. The absence of such

analysis would result not only in unnecessarily large

binaries, but also much longer compilation times, be-

cause all program methods would have to be compiled,

regardless of whether or not they are actually used

at runtime [10].

To compare different compilations, we use reports

generated by Native Image, in particular, call graphs

in the form of CSV tables.

3. Comparing Call Graphs

Comparison of call graphs is a challenging task, mainly

because call graphs of real applications are very large

to examine, with tens to hundreds of thousands of

nodes. We use an approximation algorithm by Lhotak

et al. [4], which simulates the flow of a fluid in reverse

from the methods to the program’s entrypoints. The

two graphs being compared are called supergraph and

subgraph. An initial value is assigned to all methods

of the supergraph, and in each iteration, the fluid

flows in reverse through edges, and its amount slowly

decreases until it gets consumed entirely by a method

that is reachable in both graphs. The amounts of

fluid flowing through each edge are recorded and after

the maximum amount among all methods reaches a

specific value, the algorithm terminates. Edges that

lead into larger areas missing from the subgraph will

have a higher score.

Consider the example graphs in Figure 2 , where the

supergraph has five nodes that are missing from the

subgraph. We want to identify the edges that cause

the most difference. We would probably expect the

edge from node B to node D to have the highest

score, as removing it would eliminate three nodes

from the call graph. Other important edges are C→G
and C→H. Those are also a part of the difference
boundary; however, their score should be lower than

the first edge, as they lead into smaller subgraphs, and

removing either would not have such an impact. The

fluid flow algorithm correctly identifies these three

edges, as seen in the final scores.

Our final implementation is written in C, focusing on

optimization to provide maximum performance. For

two call graphs with a difference of 25,000 nodes, the

algorithm takes around an hour to complete; however,

we can significantly reduce the time it takes to run

by limiting the number of iterations with minimal loss

of precision.

4. EdgeTrace

EdgeTrace is a web application that allows the import

of call graphs from Native Image compilation reports,

their visualization, and difference calculation.

At the heart of EdgeTrace is Neo4j [6], a graph

database that stores the imported call graphs and

lets us run queries on them by using its Cypher lan-

guage [5]. The backend of the web application is

written in Python and built using the FastAPI frame-

work [9], and it sends queries to the graph database

using the official Neo4j Python driver [7].

The visualization is handled by a SvelteKit frontend [8]

that uses Cytoscape.js [1] to render graphs. For better

orientation in a call graph, EdgeTrace provides a tree

view of packages, classes, and methods that can be

filtered (see Figure 5 ), and toggleable compound

nodes that highlight the same hierarchy directly in

the graph (see Figure 4 ). Detailed properties of

methods and edges are shown by clicking on them

inside the graph, and neighbors of methods (callers

and callees) can be easily shown in the graph using

the neighbors panel. It is possible to open up to 10

separate views simultaneously.

The difference algorithm is written in C and is con-

trolled by the backend using Python–C bindings. The

computation progress is displayed in the application

in real time. After computing the difference between

two specific graphs, the most important edges can

be viewed, and their coloring uses a scale based on

their score, as shown in Figure 3 .

5. Conclusions

The result of this project is an intuitive web applica-

tion that processes reports of GraalVM Native Image

compilations, compares the resulting call graphs, and

displays them in an interactive way. We have found a

viable method of call graph comparison and developed

a program that allows intuitive visualization of the

process. EdgeTrace can already be used by Native

Image’s developers to evaluate the results of their

work on static analysis.
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