§kdk o 2025 [e Sesemony

Edgelrace: Automated Call Graph

Comparison for GraalVM Native Image

AUTHOR SUPERVISOR
Milan Vodak Ing. David Kozak

Native Image: Java to Native Binaries Comparing Call Graphs
GraalVM Native Image produces native executables How to compare call graphs? We want to find edges
from Java bytecode — no JVM required at runtime. from the larger graph that cause the most differences.
How to minify the executable? Points-to analysis (PTA) ° a
discovers reachable program elements to compile [2]. B5D 2.997
C>6 0.999
OO HOIC
Java bytecode — native image DSE 0.999
application \ (’ Z?:;;s:iso ahead-of-time | codein D>F 0.999
libraries Fr— heap 1 compilation text section
JDK | — image heap image heap in ° ° ¢
L run it " data sect
VM / initializations T i Figure 2: Two example graphs we compared

and the final edge scores. Removing edge
B—D would help the most with minification.

The algorithm by Lhotak et al. [1] simulates the flow
of a fluid in reverse from methods to entrypoints.
More fluid flowing through an edge — higher score.

Figure 1: Steps that Native Image performs at build time. Taken from [2].

Static analysis of large applications is challenging.
We had no tool to track impacts of PTA changes.

How to evaluate precision of Native Image We use this algorithm to find edges that
static analysis? By comparing call graphs. are most responsible for the difference.
A com
Call Graphs Visualization - B £ ex:;"pp'e
EdgeTrace is a web application that: w Exnf;'s'e
C
- allows import of Native Image reports, D ah collapsed
- displays call graphs in an interactive way, S 4 Reader\.
- shows the most important differences. E . G / \ = a
- H

Key features: |
_ :) Figure 4: A call graph in EdgeTrace with pack

Neo4; graph.databgse to save call graphs, T s o ol 9
) Cypher q.uerles. to find methOd.S and paths, Figure 3: Call graph from Figure 2 with
- visualization using Cytoscape.js frontend, difference visualized in EdgeTrace. % com Figure 5: EdgeTrace's
- the algorithm runs via Python-C bindings. %"""at erarchical view of

aw packages, classes,
4 beans and methods.
I 42 io
EdgeTrace processes call graphs gene.ra.ted by N&.]T.IVG Image, e
computes the difference and displays it in an intuitive way. i« BufferecOutputsuear
Q flush

[1] Lhotak, O. Comparing call graphs. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering.

New York, NY, USA: Association for Computing Machinery, 2007, p. 37-42. PASTE '07. ISBN 9781595935953. Available at: https://doi.org/10.1145/1251535.1251542.
[2] Wimmer, C.; Stancu, C.; Hofer, P; Jovanovic, V.; Wogerer, P. et al. Initialize once, start fast: application initialization at build time. Proc. ACM Program.
Lang. New York, NY, USA: Association for Computing Machinery, october 2019, vol. 3, OOPSLA. Available at: https://doi.org/10.1145/3360610.

