
Comparing Call Graphs

We use this algorithm to find edges that
are most responsible for the difference.

D

E F

G

H

A

B C

A

B C

X

How to compare call graphs? We want to find edges
from the larger graph that cause the most differences.

The algorithm by Lhotak et al. [1] simulates the flow
of a fluid in reverse from methods to entrypoints.

More fluid flowing through an edge → higher score.

Figure 2: Two example graphs we compared
and the final edge scores. Removing edge

B→D would help the most with minification.

B→D 2.997
C→G 0.999
C→H 0.999
D→E 0.999
D→F 0.999

SUPERVISOR

Ing. David Kozák
AUTHOR

Milan Vodák

EdgeTrace: Automated Call Graph
Comparison for GraalVM Native Image

Native Image: Java to Native Binaries

How to evaluate precision of Native Image
static analysis? By comparing call graphs.

GraalVM Native Image produces native executables
from Java bytecode – no JVM required at runtime.

How to minify the executable? Points-to analysis PTA
discovers reachable program elements to compile 2.

Static analysis of large applications is challenging.
We had no tool to track impacts of PTA changes.

Figure 1: Steps that Native Image performs at build time. Taken from [2].

Call Graphs Visualization

- Neo4j graph database to save call graphs,
- Cypher queries to find methods and paths,
- visualization using Cytoscape.js frontend,
- the algorithm runs via Python–C bindings.

Figure 3 Call graph from Figure 2 with
difference visualized in EdgeTrace.

Key features:

- allows import of Native Image reports,
- displays call graphs in an interactive way,
- shows the most important differences.

EdgeTrace is a web application that:

Figure 5 EdgeTrace's
hierarchical view of
packages, classes,

and methods.

Figure 4 A call graph in EdgeTrace with package
and class compound nodes enabled.

EdgeTrace processes call graphs generated by Native Image,
computes the difference and displays it in an intuitive way.

[1] Lhoták, O. Comparing call graphs. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering.
New York, NY, USA: Association for Computing Machinery, 2007, p. 37–42. PASTE ’07. ISBN 9781595935953. Available at: https://doi.org/10.1145/1251535.1251542.
[2] Wimmer, C.; Stancu, C.; Hofer, P.; Jovanovic, V.; Wögerer, P. et al. Initialize once, start fast: application initialization at build time. Proc. ACM Program.
Lang. New York, NY, USA: Association for Computing Machinery, october 2019, vol. 3, OOPSLA. Available at: https://doi.org/10.1145/3360610.

