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Native Image: Java to Native Binaries Comparing Call Graphs
GraalVM Native Image produces native executables How to compare call graphs? We want to find edges
from Java bytecode — no JVM required at runtime. from the larger graph that cause the most differences.
How to minify the executable? Points-to analysis (PTA) ° a
discovers reachable program elements to compile [2]. B5D 2.997
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and the final edge scores. Removing edge
B—D would help the most with minification.

The algorithm by Lhotak et al. [1] simulates the flow
of a fluid in reverse from methods to entrypoints.
More fluid flowing through an edge — higher score.

Figure 1: Steps that Native Image performs at build time. Taken from [2].

Static analysis of large applications is challenging.
We had no tool to track impacts of PTA changes.

How to evaluate precision of Native Image We use this algorithm to find edges that
static analysis? By comparing call graphs. are most responsible for the difference.
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