
http://excel.fit.vutbr.cz

Language for Prototyping of Visualizations

Daniel Kř́ı̌z

Abstract

Creating graphics applications is difficult because not only is the direct code targeting the GPU hard and

complex, but the user must also create whole another program targeting the CPU. This work proposes

a solution to this problem in the form of a new language that is embedded into GLSL in the form of

high-level preprocessor directives. The language comprises ten separate directives that make it possible to

define the context and structure of a whole graphics application in a single file. This source file can be

further interpreted by an interpreter that initializes the wanted resource and the GPU and further executes

the program thanks to the OpenGL library. Theoretically, it can be possible to extend this approach to

other shading languages and graphics APIs. Thanks to this solution, it is possible for an experienced user to

rapidly prototypes new techniques without the need to waste precious time on the development of context.

It also provides a more user-friendly environment for total newcomers to compute graphics programming.

*xkrizd03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Developing applications that use GPUs is hard. Not

only does the user have to learn a particular language

that is used to define programs that are directly tar-

geting the hardware (shaders). However, they also

have to define the whole other application targeting

the CPU that is directing the whole process. This

adds unnecessary friction to the whole mix, making

it hard for newcomers to enter the field and for expe-

rienced users to experiment with various techniques.

Therefore, the main problem is the amount of work

that has to be done before it is possible to develop the

desired solution or just learn. Depending on the use

case, there are several approaches that are possible

to take in order to overcome, or at least mitigate this

problem.

• It is possible to use generic game engines as
simple rendering engines. This has several ad-

vantages: (1) the pipeline is already set up,

and (2) there usually is support for importing

various kinds of data. However, the solution

is still bound to the said engine, and the user

has to learn a whole new technology just to

create something that might possibly be much

simpler [1, 2].

• Another approach is to leverage the 3D mod-

eling software. For example, it is possible to

create arbitrary meshes with textures in Blender

using the node-based visual language [3]. This

is great for newcomers; however, they just learn

how to create visualizations, not how to imple-

ment or use some low-level technique.

• In the end, there are whole web-based solutions
that make it possible to develop shaders. For

example, the Shadertoy [4]. In this tool, a user

can define their fragment shader and experiment

with it as they please. However, they are also

constrained only to the fragment shader.

This gave rise to the idea of creating an entirely

new language that would allow us to use any type of

shader, be lightweight and require minimal additional

knowledge that is needed to create some graphics

applications with it.

Therefore, I have designed a language that is pre-

sented in the following sections.

2. What is VPSL?

VPSL is a language based on high-level directives

that is used together with some shading language

targeting GPUs. It aims to be minimal and easy to

grasp, making it possible to focus on GPU program

development rather than on CPU setup.

http://excel.fit.vutbr.cz
mailto:xkrizd03@stud.fit.vutbr.cz


3. Why is it useful?

• Known concept – directive-based extensions of
various languages are not new concepts. For

example, OpenMP [5] and OpenACC [6] are

also based on this concept.

• Less work on CPU – it is possible to define
the host’s code with directives, and then it is

possible to spend more time on the development

of the desired application.

• No new language – it is just an extension of
already existing shader languages. Therefore, it

is only necessary to learn a handful of directives

on top of GLSL knowledge.

• Extensible – because it is based on preprocessor
directives and internally leverages the SPIR-V.

Theoretically, any language with preprocessor

and SPIR-V can support VPSL.

4. The Basic Idea

The user should be able to simply create the whole

application in just a single file, with the need to set

up as little of the host’s context as possible. This is

further illustrated by Figure 1 .

5. Usage

In Listing 1 an example of a source file using the

VPSL can be seen. It is a program that renders

a textured triangle (the output of this program can

be seen in Figure 3 ). The long outer gray line on

the left side of the figure denotes the whole program’s

scope. This program contains two separate shaders

denoted by the two shorter gray lines: vertex and

fragment shaders. The texture is then loaded from

the filesystem (the path is omitted) and bound to the

sampler in the fragment shader.

6. Directives

• Begin-end – is used to define the scope of
some other directive. Otherwise, the engine

would not know which lines belong to which

construct. It can be replaced with brackets for

higher brevity.

• Shader – declares a shader. It can be of various
types that are known to almost any shading lan-

guage. Nevertheless, it is possible to define the

so-called generic shader, which can contain

only generic functions and can be appended to

other shaders as a kind of a module.

• Program – declares a shader program. It is
possible to specify the order of programs and

to compose them solely from shaders from dif-

ferent programs.

• Load – is used for loading some resource from
a file from the filesystem. Three types of re-

sources are supported: (1) meshes, (2) textures,

and (3) materials.

• Texture – Declares that a particular texture
should be bound to the particular shader.

• Buffer – declares an arbitrary buffer that can
be used to pass data between various shaders.

Its size can be either calculated automatically

or manually defined (if the buffer contains an

array).

• Resource Store – adds a particular path in the
filesystem to the search path, thus reducing

the number of characters needed in the load

directive.

• Include – appends other VPSL source files.
• CopyIn – defines the attributes that are going
to be passed into the graphics pipeline.

• Option – enables or disables particular options
of the GPU runtime (e.g., face culling).

7. How it works?

First, a source file is passed to the parser. This parser

then separates the shader code and directives (and

context around them, if needed). The shader code is

then composed into individual shaders as the direc-

tives dictate. From these directives is then assembled

the context of the application (which data should

be loaded and where, what is the order of programs,

which shaders compose a particular program), and

this context is together with shader passed to the en-

gine, which then executes the shader programs on the

GPU. This whole process can be seen in the diagram

in Figure 2 .

Conclusion

My work makes it possible for newcomers to simply

enter the field of computer graphics. It is also useful

for experienced developers because then they can fo-

cus on the implementation of some techniques rather

than on the setup of context for the application.

Acknowledgements

I would like to thank my supervisor, Ing. Tomáš Milet,

Ph.D., for his help with the design of the language

and his willingness to work with my chaotic nature.



References

[1] Godot Foundation. Godot documentation: Shad-

ing reference.

[2] Unity Technologies. Unity - Manual: Introduction

to writing shaders in code.

[3] Blender Foundation. Blender Documentation.

[4] Shadertoy BETA.

[5] The OpenMP API specification for parallel pro-

gramming.

[6] OpenACC Organization. Openacc homepage:

What is OpenACC?


	Introduction
	What is VPSL?
	Why is it useful?
	The Basic Idea
	Usage
	Directives
	How it works?
	References

