
http://excel.fit.vutbr.cz

Web Application for Smart Device Management and

Responsive IoT Data Visualization

Marek Joukl, Marko Olešák

Abstract

The rise of IoT devices and smart homes has created a need for their management, monitoring, and

analysis. This paper presents a newly developed frontend application built on the existing Real-Time

IoT (RIoT) system that fulfills these requirements. The new solution replaces the original frontend

application, which suffered from poor responsiveness, several user experience issues, and a complete lack

of dashboard or data visualizations, with a fully modular and mobile-friendly web interface. The application

is capable of dynamic device type definition, customizable dashboard with real-time data visualization, Key

Performance Indicators (KPIs) management through an integrated editor, process automation using a

Visual Programming Language (VPL) editor, and newly introduced support for device commands.

*xjoukl00@vutbr.cz, xolesa00@vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The rapid development of smart home technologies

and IoT ecosystems has created a strong demand for

unified management and monitoring platforms. How-

ever, many existing solutions remain tied to specific

brands, lack flexibility, or struggle with poor respon-

siveness and usability. Addressing these challenges,

this project focuses on the redesign and implementa-

tion of a new frontend application built on the RIOT

system [1], a platform offering a Go-based GraphQL

backend for real-time device management.

The original RIoT frontend exhibited several limita-

tions, including a non-responsive design, inconsistent

user experience, and missing features crucial for effec-

tive device configuration and system scalability. The

newly developed frontend application introduces a

fully modular, mobile-first architecture based on mod-

ern web development principles. It supports dynamic

device type definition, enabling users to flexibly define

new devices with custom parameters and commands.

Furthermore, the system incorporates a customiz-

able dashboard with real-time data visualization, a

Key Performance Indicator (KPI) editor for monitor-

ing performance metrics, and a Visual Programming

Language (VPL) editor to automate smart device

behavior. Moreover, devices can be organized into

groups for enhanced control.

2. Current Solutions

There are many other existing solutions, notable exam-

ples include Home Assistant1, OpenHAB2, or Google

Home3. However, they often fall short in terms of

general usability, customization, scalability, or respon-

siveness. For instance, OpenHAB does not provide a

user-friendly interface and can be truly challenging for

beginners to navigate or set up. In terms of respon-

siveness, Home Assistant largely mirrors the desktop

application, and Google Home does not support any

form of historical data storage or preview.

The implemented application thus seeks to bridge

this market gap by creating a solution that is both

user-friendly and has the ability to cater to even more

advanced users, with its powerful data visualizations,

KPIs, device, and group management.

3. System Architecture

The developed frontend application is built using Re-

act combined with TypeScript. Communication with

the backend is handled entirely through Apollo Client,

which manages queries, mutations, and subscriptions

1Home Assistant homepage - https://www.

home-assistant.io/
2OpenHAB homepage - https://www.openhab.org/
3Google Home homepage - https://home.google.com/

welcome/

http://excel.fit.vutbr.cz
mailto:xjoukl00@vutbr.cz
mailto:xolesa00@vutbr.cz
https://www.home-assistant.io/
https://www.home-assistant.io/
https://www.openhab.org/
https://home.google.com/welcome/
https://home.google.com/welcome/


via a GraphQL API. This approach abstracts away di-

rect network communication and provides robust tools

for state management, error handling, and caching.

The backend system is based on the RIOT platform,

utilizing a Go-based GraphQL server connected to

PostgreSQL and InfluxDB databases. All device con-

figurations, including dynamically defined device types

and their associated parameters or commands, are

stored and retrieved through this API.

The application also incorporates internationalization

support through the i18next library, allowing users

to dynamically switch between English and Czech

languages. In addition, the interface supports both

dark and light modes, enabling users to customize

the application’s appearance.

4. Key Features

The application as a whole was split into two main

parts: data visualization and device management.

Starting with the dashboard shown in Screen 1 , it is

fully responsive and features an independent layout for

each defined breakpoint, currently four, while follow-

ing the principles of the book [2]. The layout features

drag-and-drop resizing and moving of individual cards,

with dedicated buttons for better accessibility on mo-

bile devices. The dashboard unlocks for changes upon

entering edit mode and can be reverted while inside.

Furthermore, the dashboard is split into multiple sec-

tions or categories for better organization using tabs,

where the same applies, and each tab is entirely in-

dependent of the rest and features layouts for each

separate breakpoint.

Visualizations, shown in Figure 2 , can be added

using the ’+’ button and further adjusted at any time

in the edit mode. Their color schemes were carefully

selected to be colorblind friendly, following the book’s

[3] guidelines.

Since dashboards cannot display all information at

once, detailed views of devices and groups are closely

integrated with the dashboard and can be essential in

complex smart homes. These views are then suitable

for drill-down operations or similar tasks.

The device management and configuration part of

the application is demonstrated in Screen 3 . This

screen shows the overview page for device types, al-

lowing users to view, search, and manage existing

device definitions. Each device type is presented in

a card layout, showing the MQTT denotation and

offering quick actions such as viewing associated in-

stances or deleting the type. Importantly, the new

solution introduces the ability to edit device types

individually, improving on the previous system where

only creation and deletion were possible. The process

of dynamically defining new device types and integrat-

ing them into the system is visualized in Figure 1 .

The figure illustrates how a user can configure a new

device type through the frontend, which sends the

configuration in JSON format via GraphQL to the

backend.

The application also offers the ability to define KPIs

through an integrated editor, allowing users to moni-

tor important metrics related to their devices. This

KPI editor was adapted and integrated from the orig-

inal system, with minor adjustments to align with

the new architecture and styling. In addition, a VPL

editor is included, enabling users to create automa-

tion programs that control device behavior based on

defined logic.

5. Challenges and Limitations

During the development of the new frontend applica-

tion, several challenges and limitations were encoun-

tered. One significant limitation is related to back-

end readiness. Some features, such as the members

management functionality, are not fully operational

because the backend API does not yet support all nec-

essary operations for managing user groups. While the

frontend components for listing and viewing members

have been prepared, they currently rely on mock data

and will require further integration once the backend

side is completed. Similarly, command actions and

their backend handling are still in the development

process. Nevertheless, the frontend components are

prepared for their integration.

References

[1] Michal Bureš. Systém pro zpracováńı dat z

chytrých zǎŕızeńı. Bachelor’s thesis, Brno Univer-

sity of Technology, Faculty of Information Tech-

nology, Brno, 2024.

[2] Stephen Few. Information Dashboard Design:

The Effective Visual Communication of Data.

O’Reilly Media, Inc., 2006.

[3] Claus O. Wilke. Fundamentals of Data Visualiza-

tion. O’Reilly Media, Inc., Sebastopol, CA, 2019,

2019.


	Introduction
	Current Solutions
	System Architecture
	Key Features
	Challenges and Limitations
	References

