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Abstract

The goal of this work is to propose a novel implementation of the Ant Colony Optimization (ACO)

algorithm, termed Rainbow ACO. Although primarily designed to solve the Traveling Salesman Problem

(TSP), the versatility of ACO allows the proposed method to be applied to a wide range of optimization

problems. To achieve high efficiency and superior performance, Rainbow ACO integrates six distinct

techniques aimed at enhancing both the exploration and exploitation capabilities of the algorithm. The

algorithm was tested on complex TSP scenarios and demonstrated promising results.
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1. Introduction

Ant Colony Optimization (ACO) is a powerful meta-

heuristic for solving complex combinatorial problems,

including the Traveling Salesman Problem (TSP), ve-

hicle routing, scheduling, network [1] optimization,

and chip design [1]. Despite its versatility, traditional

ACO suffers from many issues like premature con-

vergence and a suboptimal exploration-exploitation

balance. To address these limitations, we introduce

Rainbow ACO, a novel implementation that inte-

grates six distinct enhancement strategies. The pro-

posed hybrid approach aims to boost the algorithm’s

exploitation capabilities while maintaining the explo-

ration of promising solutions.

Rainbow ACO is primarily designed to solve the Trav-

eling Salesman Problem (TSP). The TSP is a classic

combinatorial optimization problem where the task is

to find the shortest tour that visits each city exactly

once and returns to the origin city. It is NP-hard,

meaning that as the number of cities increases, the

computational complexity grows exponentially, mak-

ing it impractical to solve by brute-force methods for

large instances.

The most well-known basic implementations of ACO

are the Min-Max Ant System (MMAS) [2] and the

Ant Colony System (ACS) [3]. Modern frameworks

for solving average-sized TSP instances (ranging from

0 to 1,000 cities) include DeepACO, Symbiotic Or-

ganism Search ACO [4], Heuristic Smoothing ACO

[5], and Lévy-flight ACO [6]. Additionally, for large

to extra-large TSP instances (ranging from 1,000

to 1,000,000 cities), Partial ACO [7] and Restricted

ACO [8] are commonly employed due to their ability

to manage computational complexity and memory

limitations.

Rainbow ACO includes six main features to enhance

performance: a restricted pheromone matrix [8], the

Lin-Kernighan heuristic [9], an improved Convex and

Convey Two-Opt operator [5], Lambda-branching

stagnation protection [2], dynamic lower and upper

bounds for pheromone values [2], and a hybridization

with the Grasshopper Optimization Algorithm (GOA)

[10].

Rainbow ACO Achievements:

• Automatic tuning of the ACO parameters α and
β, eliminating the need for manual adjustment.

• Adaptation of the state-of-the-art local search
operator – the Lin-Kernighan Heuristic – to the

pheromone context, along with the incorpora-

tion of advanced k-Opt operations.

• Implementation of stagnation protection mecha-
nisms – recovering from premature convergence

and continue effective exploration.

• Low memory footprint and adaptable perfor-
mance — both time and memory complexities

scale linearly with problem size.

2. Poster Commentary

All techniques employed in Rainbow ACO are illus-

trated in Fig. 1 . In the following commentary, we
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focus on discussing the most impactful components

of Rainbow ACO.

2.1 Parameter Tuning

In traditional ACO implementations, the parameters

α and β are typically set to constant values, requiring

manual tuning for each specific TSP instance. To

overcome this limitation, Rainbow ACO employs the

Grasshopper Optimization Algorithm (GOA) to dy-

namically tune the α and β parameters during the

optimization process.

In this approach, each grasshopper represents a can-

didate solution defined by a pair (α,β) for the ant

colony. GOA simulates the natural behavior of

grasshoppers, capturing social interactions, attrac-

tion toward optimal food sources, and repulsive forces

near the best solutions to encourage exploration. An

illustrative conceptual model of the grasshoppers’ in-

teractions is presented in Fig. 2 . The evolution of

α and β values over the course of the Rainbow ACO

run is shown in Fig. 3 .

2.2 Local searches

In approximately 90% of existing ACO implemen-

tations, 2-Opt or 3-Opt local searches are used to

improve the ants’ solutions. In Rainbow ACO, two

local search operators are utilized: Convey and Con-

vex 2-Opt and Lin Kernighan heuristic (LKH). The

purpose of Convex 2-Opt is to enhance the paths of

all ants, while an adapted LKH, powered by k-Opt, is

designed to enhance the best local solution. The Con-

vey and Convex 2-Opt operators aim to smooth the

search space ( Figure 6 ). The adapted LKH selects

k suspicious edges based on their pheromone levels,

prioritizing edges with the lowest pheromone values,

and then performs the k-Opt operation ( Figure 4 ).

2.3 Stagnation protection

Due to the evaporation factor ρ, the solution space in

classic and modern ACO implementations can shrink

too rapidly. As a result, ants are prone to being

trapped in local optima, significantly limiting explo-

ration. To mitigate this challenge, Rainbow ACO in-

corporates a stagnation protection mechanism. When

stagnation is detected, Rainbow ACO reinitializes all

edges with the maximum pheromone value, thereby

encouraging renewed exploration and preventing pre-

mature convergence. This mechanism is illustrated

in Figure 4 .

2.4 Experiments

The experiments were conducted using the Art TSP

dataset provided by the University of Waterloo. Rain-

bow ACO demonstrated competitive performance

compared to existing methods such as Partial ACO

and Restricted ACO ( Figure 8 ). Moreover, the al-

gorithm exhibited linear time complexity as the size

of the TSP instances increased ( Figure 9 ). Illus-

trative representations of the solutions obtained are

presented in ( Figure 10 ).

3. Conclusions

Although Rainbow ACO did not drastically outper-

form existing solutions, it demonstrated promising

and competitive results.

We continue to enhance the performance of Rainbow

ACO by implementing efficient data structures to

accelerate local search operations and by developing

a more complex and adaptable solution construction

mechanism. Furthermore, we plan to extend Rain-

bow ACO to other optimization problems in order to

evaluate its effectiveness across a broader range of

scenarios.
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