

Efficient Multi-Vector Document Retrieval with Adaptive Representation Size

Author: Jakub Štětina

Supervisor: Ing. Martin Fajčík, Ph.D.

Motivation

Problem: Multi-vector retrieval models like ColBERTv2 produce large indexes with per-token embeddings \rightarrow high storage and retrieval cost.

Goal: Introduce learned sparsity during indexing to retain only important token representations.

Sparsity Mechanism

- Sparisty scoring Layer on top of token embeddings.

- Each token gets a sparsity score
- $s \in [0,1]$ via sigmoid/softmax activation.
- Decision: Threshold-based or Quantile-based

keep decision = $\mathbb{I}(\phi(W \cdot h + h) > \tau)$

Idea: Add a lightweight scoring layer to decide which token embeddings to keep.

Training

- Fine-tune on MS MARCO
- Enforce sparsity during training.
- Grid search λ parameter sparsity intensiry

$$\mathcal{L} = \mathcal{L}_{\text{ColBERT}} + \lambda \cdot \frac{\sum_{i} |s_i|}{|S|}$$

Formula 1: Modified loss function with added L1 regularization term for sparsity control.

Figure 1: Effect of varying sparsity loss coefficient λ

$$\operatorname{keep decision} = \mathbb{I}(\varphi(\mathbf{W} \cdot \mathbf{u} + \mathbf{0}) > \mathbf{1})$$

Formula 2: Decision rule for token retention based on activation score and threshold.

Results

Model	Index Reduction (%)	R@10	Best Step
ColBERT-based	87.7	0.933	140k
BERT-based	63.2	0.944	$35\mathrm{k}$
Baseline: ColBERTv2	0.0	0.957	-
Baseline: ColBERT-single-vect	98.5	0.517	70k

Table 1: Retrieval performance and index compression comparison against original ColBERT and single-vector baselines.

on the auxiliary loss curve during training.

Figure 2: Distribution of learned sparsity scores after 30,000 training steps.

Figure 4: Average token reduction across documents of varying length

POS Category	Original (%)	Kept $(\%)$	Retention Ratio (Kept / Original)
NOUN	29.66	52.83	$1.78 \mathrm{x}$
VERB	12.41	17.94	$1.45 \mathrm{x}$
ADJ	10.84	21.41	$1.98 \mathrm{x}$
ADV	2.74	2.15	$0.78 \mathrm{x}$
PRONOUN	2.38	0.38	$0.16 \mathrm{x}$
DETERMINER	8.51	0.36	$0.04 \mathrm{x}$
PREPOSITION	11.34	1.53	$0.13 \mathrm{x}$
CONJUNCTION	3.27	0.09	$0.03 \mathrm{x}$
MODAL	0.84	0.36	$0.43 \mathrm{x}$
NUMERAL	4.13	2.28	$0.55 \mathrm{x}$
PARTICLE	0.15	0.11	$0.76 \mathrm{x}$
INTERJECTION	0.01	0.00	$0.24 \mathrm{x}$
PUNCTUATION*	13.44	0.09	$0.01 \mathrm{x}$

Table 2: Token retention ratios for different POS categories