
http://excel.fit.vutbr.cz

AI-generated fairy tales

Barbora Šmondrková*

Abstract

The aim of this work is to simplify the creation of personalized fairy tales using artificial intelligence.

Existing tools for story generation often require extensive customization, making them less accessible to

younger or less experienced users. This paper presents a modular application that enables users to generate

AI-driven fairy tales from a simple keyword or short description, combined with voice cloning for audio

output. The system consists of four interconnected modules: client, server, text-to-speech, and language

model. The user interface is designed to be intuitive and accessible for all age groups. To assess whether

the generated content qualifies as a fairy tale, both human evaluation based on a custom definition and

automated metrics were applied. Results show that the system produces coherent, readable texts that

align with the characteristics of traditional fairy tales, offering a user-friendly solution for AI storytelling.

*xsmond00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The goal is to make the creation of fairy tales cus-

tomizable, simple and enjoyable. Traditional story-

telling relies on time and skill in writing, while the

proposed system empowers anyone to create custom

stories in just a couple of steps. By combining AI-

generated fairy tales with voice cloning and intuitive

controls, the system allows anyone to create person-

alized fairy tales in both text and audio formats.

The aim for the system is to be suitable for all age

groups, including children. It could also give an idea of

what AI is capable of even to a younger audience. The

system allows for exploring the creative possibilities

of AI in fairy tale generation.

Existing solutions like the Fairytale Generator [1] are

skilled at creating personalized fairy tales, but they

involve complicated and in-depth customization. The

process can be time-consuming, as users must tailor

each aspect of the story, including settings, characters,

genres, and more. While they now also offer narration

in a selected voice, they don’t support the upload of

personal voices.

My solution aims to simplify the customization pro-

cess, making it easy enough for children to use with-

out becoming overwhelmed by unnecessary options.

Instead of requiring extensive input, my application

generates fairy tales based on just a single word, a

few keywords, or a short description. Additionally,

users will have the option to choose from a selection

of prepared voices. They will also be able to upload a

voice sample or record their own voice, allowing them

to narrate the story in any voice or character they

choose. The solution also explores possible methods

to ensure the generated text meets the characteristics

of a true fairy tale.

2. Solution

The system is a modular web application where all

modules operate independently while communicating

with each other.

2.1 Architecture

The application is built from four modules: client,

server, text-to-speech (TTS) and large language

model (LLM) Figure 4 .

Client (the frontend) is developed using React and

provides a simple and intuitive user interface. It serves

as the entry point for users interacting with the ap-

plication. Server (the backend) is a Node.js Express

server that acts as the central coordinator between

the client and the services. All business logic, routing,

and API handling are handled within this module. The

TTS and LLM are treated as services. The LLM ser-

http://excel.fit.vutbr.cz
mailto:xsmond00@stud.fit.vutbr.cz


vice relies on an external LLM API provider, such as

the OpenAI API [2], and generates story text based

on the user input included in a structured prompt.

The TTS service runs on a Flask server using Python,

loads the XTTSv2 model [3], and generates speech

from text using either a selected speaker or a provided

voice sample.

2.2 Generation process

As mentioned, the important part of this system is

the ability to customize the output to the user’s

preferences. Text can be customized by providing

keywords or a short description that can be imported

with the component Figure 1 . The user can choose

three keywords, and each emoji corresponds to one

keyword, such as the duck emoji represents the word

duck. This component was designed with kids in mind

and to simplify the process of creating an idea for a

fairy tale. Even adults can prefer this component as

it does not require coming up with their own idea and

simply choosing from what is prepared. The user can

also import a description using classic text input.

Audio can be customized by selecting from predefined

speakers, uploading a voice sample, or recording a

voice. For kids to make it more interesting, there

are voices inspired by popular characters to make

the narrative more exciting Figure 2 . In this case,

voice samples are saved within the browser, and voice

cloning creates the narration. The same goes for

the user’s voice samples or their own voice recording.

The user can also choose from predefined speakers

provided by the used TTS system.

Once the user customization is provided, the story

creation begins Figure 3 . The LLM creates a story

text that can be read while the TTS system generates

the audio. Once completed, the finished audio is

available for playback with player controls.

2.3 Generation approaches

Two approaches are used to generate the text, one

focusing on the use of only one single prompt (single-

prompt) and the other dividing the generation into

multiple smaller tasks (subtasks) Figure 5 .

A single-prompt approach collects the user input (key-

words or short description) and adds it to a prepared

prompt template. This prompt template consists of

a task specification, a fairy tale definition, and guide-

lines for generation. This prompt template is then

provided to the LLM for generation.

The subtasks approach, in the end, uses the same

prompt as the single-prompt approach, but before

this final full story prompt, it generates story-specific

attributes that are then connected to the final prompt.

It generates space, character, event, and plot, each

on its own, and always passes the output from the

prompt as input to the next one, along with user

input.

3. Evaluation

The problem with fairy tales is that everyone can

imagine something different under this term. For

example, some people require magic in every fairy

tale, while others do not. For this reason, I created

a definition of fairy tale based on which the story is

generated and evaluated.

The generated text can be evaluated by the mentioned

definition, where humans are the judges. Based on

this definition, they evaluate the text and consider

if the generated text passes the provided definition

Figure 6 . A checklist of attributes is derived from

this definition to simplify the evaluation. Additionally,

they evaluate preferences for the text generated by

different approaches (single-prompt or subtasks).

Another approach is to use automatic evaluation met-

rics, such as BERTScore or Readability. BERTScore

compares two texts based on their semantic similar-

ity [4]. Readability evaluates how easily a text can

be understood by sentence length and the number

of syllables in words [5]. I used these metrics on a

100 classic fairy tales from the Fairy Tale dataset

acquired from Hugging Face to determine the typical

values for fairy tales. I compared each fairytale to

every other in the dataset, and then, with statistics

methods, IQR or mean and standard deviation [6, 7],

defined the ranges. These ranges are considered the

typical fairy tale values in my work Figure 7 .

The generated text is evaluated using the same met-

rics as the 100 fairy tales. The metrics are then

averaged and compared to see if they fall within the

typical ranges. If the scores of the generated text fall

within these ranges, it is possible to determine that

the generated text shares a sentence structure and

vocabulary similar to fairy tales in the dataset.

4. Conclusions

I believe I have developed a user-friendly application

that simplifies the generation process for all ages.

I identified a suitable text evaluation method and

explored various approaches to AI fairy tale creation.

In the next steps, I aim to improve voice cloning

and make the generation even more interesting while

keeping it simple.



References

[1] Fairytale generator – create your own ai-

powered fairytales. online, 2024. https://

fairytalegenerator.com/.

[2] OpenAI. Openai api. online, 2024. https://

openai.com/index/openai-api/.

[3] CoquiAI. Xtts-v2. online, 2024. https://

huggingface.co/coqui/XTTS-v2.

[4] Asli Celikyilmaz, Elizabeth Clark, and Jianfeng

Gao. Evaluation of text generation: A survey.

arXiv preprint arXiv:2006.14799, 2020.

[5] William H DuBay. The principles of readabil-

ity. Online submission, 2004. ERIC Document

ED490073.

[6] Songwon Seo. A review and comparison of meth-

ods for detecting outliers in univariate data sets.

Master’s thesis, University of Pittsburgh, Gradu-

ate School of Public Health, 2006.

[7] Marcin Rutecki. Outlier detection

methods. online, 2022. https:

//www.kaggle.com/code/marcinrutecki/

outlier-detection-methods.

https://fairytalegenerator.com/
https://fairytalegenerator.com/
https://openai.com/index/openai-api/
https://openai.com/index/openai-api/
https://huggingface.co/coqui/XTTS-v2
https://huggingface.co/coqui/XTTS-v2
https://www.kaggle.com/code/marcinrutecki/outlier-detection-methods
https://www.kaggle.com/code/marcinrutecki/outlier-detection-methods
https://www.kaggle.com/code/marcinrutecki/outlier-detection-methods

	Introduction
	Solution
	Evaluation
	Conclusions
	References

